
2. The method of averaging wall temperatures and membrane concentrations as mean arith- 
metic quantities is only approximate. 

3. The method of calculating concentration distribution over membrane thickness does 
not take into account the convective component of transfer. 

However, despite the shortcomings connected with the approximate nature of the calcula- 
tions, the method used is correct in principle, and the results obtained do give a qualita- 
tively correct picture, without a doubt. A more refined technique will naturally produce more 
accurate results. 

NOTATION 

G, weight flow rate; F, surface area; m, mass transfer coefficient, referred to condens- 
er surface; Pr,c, partial vapor pressure in mixture; p, total mixture pressure; B, mass 
transfer coefficient, referred to partial pressure; Ap, partial pressure heat; J, vapor trans- 
verse mass flow density; e, electrolyte concentration; t, temperature; 6t, temperature varia- 
tion; i, current density; I, load current. Subscripts and superscripts: r, in reactor; e, 
in condenser; s, on surface; h, hydrogen in reaction; m, mixture; th, thermostat liquid; in, 
input; out, output. 
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EFFECTIVE CONDUCTIVITY OF HETEROGENEOUS SYSTEMS WITH 

DISORDERED STRUCTURE 

Yu. P. Zarichnyak and V. V. Novikov UDC 536.24 

A model reflecting the disordered character of the structure of a heterogeneous sys- 
tem is proposed, together with a method for calculating the coefficients of gener- 
alized conductivity* of compounds, eutectics, composites, and solutions. 

We will consider the simplest possible two-component heterogeneous system with chaotic 
structure, formed, for example, by the pressing of a mixture of two different powders of com- 
pact particles. We will limit our consideration to the case of mechanical mixture of nonin- 
teracting components which preserve their original properties both within the volume and at 
the phase boundary. 

Use of the concept of "disordered" structure assumes that in regions of the system with 
dimensions significantly exceeding the dimensions of the original particles the values of the 
volume concentrations of the components mi, mj are practically indistinguishable from the 
average values of those quantities over the entire system volume, while the system properties 
are isotropic within the limits of the region and over the system as a whole~ although local 
deviations from mean values may occur. 

We will attempt to develop a model reflecting the random (probability) character of the 
distribution of the individual components within the volume of the two-component system with 
disordered structure, and to determine its effective conductivity. 

*The coefficients of generalized conductivity are the coefficients of thermal conductivity, 
electrical conductivity, dielectricpermittivity, and magnetic permeability~ the determination 
of which is the object of the theory of generalized conductivity. 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 34, No. 4, pp. 648-655, April, 
1978. Original article submitted April 25, 1977. 
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Fig. i. Model of two-componentheterogeneous system: a) 
volume view of system; b) two-layer mass. 

In choosing a model for the system it is necessary to specify the form of the components, 
their distribution within the volume, the conditions at the boundaries, and the dimensions of 
the system in the longitudinal (direction of flow) and transverse directions. 

Models described in the literature may be divided into two types according to the method 
used to specify their dimensions: 

i. constant dimensions (usually in the form of an elementary cell containing one par- 
ticle, with a corresponding volume of the second component) [1-3]. The effective 
conductivity is determined as an analytical function of the concentrations and con- 
ductivities of the components; 

2. several particles in length in the direction of flow, with the number of particles 
dependent on the component concentrations [4-5]. Effective conductivity is deter- 
mined by computer calculation. 

The desirability of using this latter type of model depends on the type of structure in- 
volved and becomes warranted when there is a sharp difference in conductivity of the compo- 
nents. 

An analogous problem has been considered in percolation theory [6], with systems of the 
type dielectric-- conductor (A # 0, A2 = 0). In percolation theory it was found by computer 
simulation that there exists in the system a threshold concentration of conductive component 
m c (m c = 0.15) at which the effective conductivity undergoes an abrupt change: if mz < m c, 
the effective conductivity ~ = 0, while if ml > me, then ~ # 0. However, even for a very 
small yet nonzero conductivity of the second component i > ~2/~I > i0 -~ the dependence of ef- 
fective conductivity A on component concentration is of a monotonic character [7, 8]. 

We will limit ourselves below to consideration of systems with component properties dif- 
fering within the limits i > ~2/~ > 1"10 -4 , in which there is no discontinuity in the func- 
tion ~ = f(A~, A2, ml) over the entire range of component concentrations 0 ~ m~ ~ i. 

Since the form of the compact particles has little effect on the effective conductivity 
of the system, we can replace the real particles by any compact geometric solids (for example, 
polyhedra) capable of completely (without voids) filling the system volume. 

To simulate a structure isotropic in three mutually perpendicular directions we choose 
as the model for the particles of arbitrary form cubes, arranged such that the planes pass- 
ing through the cube boundaries intersect no other cubes (Fig. la) [9] and so that the mean 
distance between cube centers equals the mean distance between particle centers in the real 
system. 

Using traditional approaches, we will study the system properties not over its entire 
volume, but in a model with variable thickness comparable with the mean distance between par- 
ticle centers in the direction of the flow and extending without limit in the two remaining 
orthogonal directions. 

We define the meanstatistical distance between the centers of conductive particles on 
the same axis <l>, and on the basis of <l> we estimate the size of the model h in the direc- 
tion of flow. 
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Fig. 2. Comparison of calculated results and experimental 
data. a) Calculation: i) Eqs. (16), (21); 2) [9]; 3) [i0]; 
4) [12]; 5) [13]; experimental data: 6) [i0]; 7) [ii]. b) 
Curve, calculation by Eqs. (16), (21); points, experiment [7]. 

The volume concentration of conductive particles in a system with N particles with iden- 
tical volume vo is equal to 

m~ = N~/V.  (1) 

We f i n d  i n  t h e  h e t e r o g e n e o u s  s y s t e m  some cube  such  t h a t  t h e  p a r t i c l e  c o n c e n t r a t i o n  w i t h -  
i n  it is equal to the particle concentration within the entire system. Then 

Nv = N__  m, _ N L ,  i.~. ' N L = (  m---J-t ~ '/3, (2) 
V Vo \ vo / 

w h e r e  N L i s  t h e  number  o f  p a r t i c l e s  p e r  u n i t  l e n g t h .  

The particle volume vo may be represented in terms of a particle form coefficient kf and 
a defining linear dimension d in the form 

= (k~) 3. (3) 

With consideration of Eq. (3) the expression for N L may be rewritten as 

NL = (kfd)-lml/3. (4) 

The reciprocal of Eq. (4) is the mean distance between particle centers 

< / > =  ~ d m T  1/3. (5) 

For  s p h e r i c a l  p a r t i c l e s  (on t h e  same a x i s )  k f  = 0 .805  and 

< / > =  0.805dmy 1/3. (6) 

With c o n s i d e r a t i o n  o f  Eq. (6)  t h e  h e i g h t  o f  a l a y e r  may be  d e f i n e d  a s  

h : < l > + d  or h : d ( l + k f m y l l ~ ) ,  (7) 

whence 

m i I to0,53; 0.53 to 0.06; 0,06 toO; (8) 

h 2d; (2 to 3) d; >~ 3d. 

Fo r  f u r t h e r  s i m p l i f i c a t i o n  o f  t h e  p r o b l e m  t h e  b o u n d a r i e s  o f  e a c h  cube  p a r a l l e l  t o  t h e  
common f l o w  d i r e c t i o n  w i l l  be  c o n s i d e r e d  a s  i n f i n i t e l y  t h i n  p l a n e s  i m p e r m e a b l e  t o  c u r r e n t  
lines. We will determine the effective conductivity of a two-layer mass (h = 2d) filled by 
different cubes (Fig. ib). 

The conductivity of the mass ~ may be calculated by summing the conductivities o:1~o~a, 
o2:, and a22 of individual cube pairs, filled by homogeneous and inhomogeneous components 
with conductivities X: and %2 (Fig. Ib): 

o = nt~11 + nt~i2 + nzi~zi --~ rim% z, (9) 
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where 
~i~ S 

f ~ i i  ----- llS/h'~ C~22 -~-  ~2 S/h; { ~ i a  = (~2! = 2 - -  
li Jr Iz h (I0) 

Here nx,, naa are the number of pairs of cubes consisting of the same component; n,a = na~ is 
the number of pairs of cubes consisting of different components; S is the area of the cube 
faces. 

Then from Eq. (9) we obtain 

( ~i~ ) S  (ii) 

We find the conductivity of the mass a assuming that all n = n,~ + nxa + na, + naa cubes 
are filled with a homogeneous substance with effective conductivity %. Equating this value 

= %nS/h to Eq. (Ii) we obtain X in the form 

n n 
We introduce the notation 

+ 4 ~'iL~ niz (12) 
li-+- ~ n 

nti -- Wii; nt2 = Wi2; n2z = W2z, (13) 
/ Z  17 r~ 

which quantities are none other than definitions of the a priori probabilities Wii , Wij of for- 
mation of pairs ii, 12, and 22. Then 

~1%2 Wi2. (14) 

Since in the simplified model all cubes are identical in dimensions, their numerical ra- 
tios nii/n, nij/n or probabilities Wii , Wij of formation of concrete combinations il, ij are 
uniquely related to the volume concentration of components m i and mj (expressed as fractions 
of unity). 

In fact, given a random distribution of cubes filled by the different components in each 
layer, the probability of formation of any pair can be calculated as the probability of the 
complex event defined by a combination of two independent (for each individual layer) events; 

i.e., 
2 'Wll = m t m  i = m~; lgia = mim2; W ~  = m2. (15) 

Substituting the value of the probabilities of Eq. (15) in Eq. (14) we obtain the final 
expression for calculation of the effective thermal conductivity of the two-layer mass with 
chaotic component distribution in the very simple form 

--mlm 2. (16) 

Equation (16) undergoes a limiting transformation to a homogeneous material (if m i = i, 
then lad = %i) and permits arbitrary interchange of the component indices, as should be the 
case for disordered structures (the requirement of symmetry or invariance upon interchange 

of indices). 

Using the same approach of approximate description as for a two-layer model, we obtain 
an expression for effective conductivity at h = 3d in the form 

~3d:~im~+~m~+9~il2mim2(~ mi+2~ ~ 2~l+t2mz ) (17) 

For the range of volume concentration of conductive particles 0.53-0.06 the values of 
the effective conductivity coefficient % will lie between the values calculated from 
Eqs. (16) and (17, for mx = 0.53 being defined by Eq. (16), and for m~ = 0.06, by Eq. (17). 
A quantitative difference between Eqs. (16) and (17) will be observed if %2/%, S 10 -2. Thus 
we write the expression forthe effective conductivity coefficient I for m, s 0.53 in the form 

i = f (too t~d, (18) 

where f(mx) is found from the boundary conditions 

=~d ~ m  i=0,5~ t= lad  at m i=0.06, (19) 
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Fig. 3. Schematic representation of compound structure: a) 
low filler concentration (mz < 0.2); b) large concentration 
of filler (m, ~ 0.4); c) 1/8 part of cube circumscribed 
about spherical inclusion. 

and we also require that the condition 

O~ O~2d 
Om I m,=O,5 ~ ~ m~=O,5 

be fulfilled. From this, for X2/X~ ~ 10 -2 we obtain 

/(m,) = 0.43 + l O . 3 m , -  14,38m~. (20) 

Thus ,  as  a s econd  a p p r o x i m a t i o n  t h e  e x p r e s s i o n  f o r  e f f e c t i v e  c o n d u c t i v i t y  X f o r  0 .06  
m, ~ 0 .53  and X2/X~ ~ 10 -2  may be w r i t t e n  i n  t h e  form 

In Fig. 2 experimental data are compared with calculations by Eqs. (16), (21) and also 
with calculation by the formulas of other authors in the concentration range m~ = 0.5-0, 
where maximum divergence occurs. The comparison of calculation by Eqs. (16), (21) with ex- 
perimental data for a system with I=/I: = 0 (see Fig. 2a) shows satisfactory coincidence over 
the concentration range m: = 1-0.15. Figure 2b presents a comparison of calculation with 
experimental data on the electrical conductivity of an Li--hTH3 system with i2/X: = 1.2"10 -3 
at T = 223~ In the Li--NH3 system there is no discontinuity in the function % = f(%~, %2, 
m2) and the calculation agrees satisfactorily with experiment over the entire concentration 
range. The mean divergence of calculated and experimental values comprises about 15%, which 
is comparable to the measurement error involved and to the errors of the approximate methods 
used for calculating effective properties. This permits recommendation of the disordered 
structure model and the approximate method of determining its effective conductivity for the 
entire range of concentrations of components whose properties differ by up to four orders of 
magnitude, i > 12/X, > i'I0 -~. With a greater difference in properties of the components 
%2/%, < I'i0 ~4 the region of applicability of the model and calculation method should be lim- 
ited to the range 0 s m2 5 0.85. The coincidence of experimental and calculated data shows 
that for the model of a heterogeneous system with disordered distribution of discrete com- 
ponents in calculations or experimental measurements one may choose a layer with the height 
given by Eq. (7), which depends on the volume concentration of the particles with the higher 
conductivity. 

It should be noted that refinement of the % value obtained in the two-layer model of Eq. 
(21) is justified only if ml < 0.5 and 12/11 ~ i0 -2. 

Generalization to the Case of a Multicomponent Disordered System Consisting of s Com~ 
ponents. Using the above approach, we can obtain an expression for calculation of the coef- 
ficients of generalized conductivity of a mechanical mixture with any number of noninteract- 

_ _  + . . .  q_ 4rnsms_i ) ~ 8 - ,  (22) 

ing components in the form (first approximation) 

~ i + ~  
or in more compact form 

: 2  I~ i ~ - j  m~rnj. 
�9 = / = l  

(23) 
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If li/%: --< 10 -2 and m, < 0.5, then in the second approximation 

k = 3f (mO 2kT-~X t m~ m.~. 
/ : = 1  "~--~. 

(24) 

Generalization to the Case of Heterogeneous Systems in Which Contact Phenomena Have a 
Significant Effect on the Transfer Process. The possibility of using the proposedmodel of 
a system with disordered structure and Eqs. (16) and (21)can be expanded to consideration of 
contact and surface phe=omena, iWe will demonstrate thiswith the example of compounds with 
a grainyfiller. 

Given a low concentration of metallic grains in a bindingcomponent (resin)of thermal 
conductivity X2, the grains with thermal conductivity ~, are disorderedly distributed in the 
form of noncontacting inclusions (Fig. 3a). With growth in concentration of filler m, > 0.2 
the individual grains approach each other and form unordered groups or chains (Fig. 3b). It 
is obvious that the conductivity along the chains of contacting particles will depend on the 
contact thermal conductivity between filler particles. If the filler grains are close to 
spherical, then one can circumscribe about them geometric solids forming a solid mass (cubes, 
prisms) and then assume that these bodies are filled by a homogeneous material with thermal 
conductivity l' = f(%1, k2, m2), which considers contact conductivity of the grains. Then 
the heterogeneous system may be represented as a mixture of geometric figures (cubes, prisms) 
of two types: with conductivities l~ and ~2 (Fig. 3c). The effective conductivity coeffi- 
cient is defined, according to Eq. (16), in the form 

klk2 m~gm~g; (25) X = k'm~ g+ k2m%g+ 4 k~ § k-----~ 

where mLg is the volume concentration of bodies circumscribed about the grains (m,g = i -- 
m2g) �9 

In the case of the cubes described above 

mlg = mi/(I__0.4703 ) _ 1,89mi" (26) 
For hexagonal prisms 

mig= mt/(1--O.3995)~l.67mi. (27) 

The value of the thermal conductivity ~' = f(k,, k2, m2) can be calculated from known 
relationships for contacting bodies [1-3]. In an analogous manner we write the expression 
for % at m: < 0.53 with consideration of Eq. (21) for ~=/~I s 10 -2 �9 

The proposed structural model and method of calculating generalized conductivity coef- 
ficients may be used for prediction of the properties of heterogeneous systems with liquid 
and gaseous, as well as solid, components. 

NOTATION 

mi, volume concentration of components; </>, mean distance between particle centers; h, 
height of representative layer; N, number of particles in volume V; NV, number of particles 
per unit volume; N L, number of particles per unit length; kf, form coefficient; Vo, volume 
of single particle; d, diameter of single particle; ~, effective conductivity coefficient; 
li, conductivity coefficient of the i-th component. 
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AN EXPERIMENTAL STUDY OF DIELECTRIC PROPERTIES OF 

NEMATIC LIQUID CRYSTALS 

I. P. Zhuk and L. E. Golovicher UDC 548.0:532.783 

Dielectric properties of three successive members of the azomethine homologous se- 
ries are considered in the liquid crystal and isotropic phases. Experimental val- 
ues are presented for the relaxation time and the dipole relaxation activation en- 
tropy and enthalpy. 

The majority of published data on dielectric properties of compounds which possess a 
liquid crystal phase concerns materials with low dielectric anisotropy and transition tem- 
peratures for the liquid crystal--isotropic liquid transition far removed from room tempera- 
ture. 

Practical requirements have recently stimulated the synthesis of series of new liquid 
crystal compounds with a mesophase region near room temperature. A typical representative 
of this group is p-methoxybenzylidene-p-butylaniline, a member of the azomethine group, the 
dielectric properties of which have been studied in the radiofrequency and uhf ranges [1-3]. 

To systematize data on the dielectric characteristics of azomethines we have studied the 
dielectric properties and calculated certain characteristics of the molecular motion of three 
members of the homologous azomethine series in the liquid crystal and isotropic liquid phases. 

We have studied p-methoxybenzylidene-p-butylaniline (MBBA), p-ethoxybenzYlidene-p-butyl- 
aniline (EBBA), and p-propoxybenzylidene-p-butylaniline (PBBA) in the radiofrequency and uhf 
ranges. 

The mesophase transition temperatures of these compounds are presented in Table i. 

All the materials studied were produced by methods described in the literature at the 
All-Union Scientific-Research Institute of Reagents and Special Purity Materials (IREA). The 
electrical conductivity of the compounds produced was not more than 10 -9 ~-1-cm-1 in the iso- 
tropic phase. The impurity content did not exceed 3 mol. %. 

The dielectric characteristic measurements in the radiofrequency range were performed 
with a specially designed low-volume cell and "Tangens-2~' measurement apparatus. The gap 
between the cell electrodes did not exceed 3 mm. The cell capacitance was 3.2 pF. The er- 
ror in e' did not exceed 0,6% and was not greater than 6-7% in e" determination in the re- 
laxation range. 

Measurements of e' and e" in the uhf range were performed by the cylindrical rod method. 
The error in e' determination did not exceed 2%, and in e" determination it was not more than 
8%. 

Temperature was stabilized to an accuracy of i0.05 ~ 

Experiments were performed over the temperature range 290-3550K and in a magnetic field 
of intensity up to 4500 G. The experiments revealed that in the rf and uhf ranges in fields 
of about 2000 G almost complete saturation of e' and e" occurred. 

Within the limits of experimental error the results of the MBBA experiments agreed with 
data in the literature [1-2]. The experimental results were compared with the data from the 

A. V. Lykov!nstitute of Heat and Mass Transfer, Academy of Sciences of the Belorussian 
SSR, Minsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vo!o 34, No. 4, pp. 656-659, 
April, 1978. Original article submitted February 25, 1977. 
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